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ABSTRACT

In the nanoscale metrology industry, there is a need for low-cost instruments, which have the
ability to probe the structrure and elemental composition of thin films. This dissertation, describes the
research performed to design and simulate a miniature Cylindrical Mirror Analyzer, (CMA), and Auger
Electron Spectrometer, (AES). The CMA includes an integrated coaxial thermionic electron source.
Electron optics simulations were performed using the Finite Element Method, (FEM), software COMSOL.
To address the large Secondary Electron, (SE), noise, inherent in AES spectra, this research also included
experiments to create structures in materials, which were intended to suppress SE backgound noise in the
CMA. Laser Beam Machining, (LBM), of copper substrates was used to create copper pillars with very
high surface areas, which were designed to supress SE’s. The LBM was performed with a Lumera SUPER
RAPID-HE model Neodymium Vanadate laser. The laser has a peak output power of 30 megawatts, has a
5x lens and a spot size of 16 um. The laser wavelength is in the infrared at 1064 nm, a pulse width of 15
picoseconds, and pulse repetition rate up to 100 kHz. The spectrometer used in this research is intended
for use when performing chemical analysis of the surface of bulk materials and thin films. It is applicable
for metrology of thin films, as low as 0.4 nm in thickness, without the need to perform destructive sample
thinning, which is required in Scanning Tranmission Electron Microscopy, (STEM).

The spectrometer design is based on the well known and widely used coaxial cylinder capacitor
design known as the Cylindrical Mirror Analyzer, (CMA). The coaxial tube arrangement of the CMA
allows for placing an electron source,which is mounted in the center of the inner cylinder of the
spectrometer. Simulation of the electron source with an Einzel Lens was also performed. In addtion,
experiments with thin film coatings and Laser Beam Machining to supress Secondary Electron emission

noise within the Auger electron spectrum were completed.

Vi
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Design geometry for the miniature CMA were modeled using Computer Aided Design, (CAD).
Fixed Boundary Conditions, (BC), were applied and the geometry was then meshed for FEM. The
electrostatic potential was then solved using the Poisson equation at each point. Having found the solution
to the electrostatic potentials, electron flight simulations were performed and compared with the analytical
solution. From several commercially available FEM modeling packages, COMSOL Multiphysics was
chosen as the research platform for modeling of the spectrometer design. The CMA in this design was
reduced in size by a factor of 4 to 5. This enabled mounting the CMA on a 2 % in flange compared to the
commercial PHI model 660 CMA which mounts onto a 10 in flange. Results from the Scanning Electron

Microscopy measurements of the Secondary Electron emission characteristics of the LBM electron

suppressor will also be presented.

vii
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CHAPTER 1: INTRODUCTION

1.1. Motivation

At the beginning of the 21st century, the field of Nanotechnology was coming of age. Almost all
branches of science and engineering were being impacted by new nanostructured materials and Micro-
electro-Mechanical devices, (MEMs). The semiconductor industry had also entered the nanoscale realm.
As of 2017, commercial devices are now being manufactured with microprocessor feature sizes as low as
10 nanometers, (nm). The drive continues in industry to develop technology, which will enable fabrication
of smaller and more compact devices. Along with this trend come great challenges and opportunities to
develop metrology methods, which will enable device miniaturization to continue. Two widely used tools
in semiconductor metrology are Scanning Transmission Electron Microscopy, (STEM), and Auger Electron
Spectroscopy, (AES). STEM and AES are two of the few methods, which have resolution capability to probe
the composition and the chemical environment of structures, both laterally and in depth, below 30 nm [1].

Surface analysis by electron spectroscopy has become increasingly important as a materials
characterization instrument for devices based on thin film processes. As the trend to decrease feature size
continues, challenges arise due to limitations of metrology instruments. The thin films found in common
consumer devices such as cell phones, LCD displays, computer memory, and hard disks must be tested for
quality control. Figure 1-1 shows a full size electron spectroscopy system. The vacuum system and
spectrometer are shown on the left and the controls console on the right. Due to the cost and large footprint
of conventional commercial surface analysis instruments, several instrument manufacturers have sought
to produce a commercially viable miniaturized spectrometer, which can be used standalone, or as an

attachment to an existing vacuum chamber for thin film metrology.
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Following the trend for making devices smaller and less expensive, it is intended in this
dissertation to model and develop an optimized design for a miniature electron spectrometer. The
spectrometer in this study is intended to be used to perform chemical analysis of the surface of bulk
materials, nanometer thick thin films, and nanostructures by AES. However, the spectrometer can also be
used for general purposes in any application that requires collection and analysis of the kinetic energy of
electrons, such as X-ray Photoelectron Spectroscopy, (XPS). A review of electron spectroscopy and Auger
spectroscopy, in particular, will follow as well as a review of the interaction of electrons with matter. In
addition, a review of electron optics associated with the formation of electron beams and the effect of a

partial vacuum in electron beam microscopy will be presented.

Fiqure 1-1: A vintage full size commercial electron spectroscopy system, [Authors photograph].

1.2. Contributions
The contributions of this research are summarized below:
a) Development of an integrated innovative research platform for design and simulation of
electron optical components using Computer Aided Design, (CAD), and Finite Element

Method, (FEM) analysis. The CAD FEM software packages were used in this research to
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specifically solve for the electrostatic fields inside a double pass CMA with a coaxial
mounted thermionic electron source, which is used as a source to excite electrons in the AES.

b) Innovative processes designed to allow for the fabrication of nano-structures and micro-
structures using Electron Beam Lithography, (EBL), Electron Beam Induced Deposition,
(EBID), Focused Ion Beam, (FIB), Electron Beam Physical Vapor Deposition, (EBPVD), and
Laser Beam Machining, (LBM).

c) Modified amethod used by M. Postek at NIST to measure SE emission using a defocused beam
of electrons to simulate diffusion of electrons inside the CMA. Using a defocused beam
reduces the possible beam damage to the LBM structure. It also reduces SE noise in the
waveform from imperfections in the substrate such as scratches. In addition, the modified
method acts to homogenize the measurements from anisotropy in the substrate.

d) The novel CMA design using COMSOL FEM was successfully implemented and validated in
a commercial miniaturized Auger Electron Spectroscopy system [2].

e) A novel LBM structure was invented, which acts to amplify, or to suppress emission of
electrons, which may also act to absorb EM radiation. SE emission may be tuned by
modification of the LBM structures to obtain electron emission amplification or suppression
[3].

1.3. Dissertation Outline
This dissertation contains six chapters, including the current chapter, which covers the
Introduction. The remaining five chapters are outlined below.

a) Chapter 2 includes a literature review on the general theory of Auger spectroscopy and on the
CMA design including the different types of electron sources, which are used. In addition, it
includes an example of the design efforts associated with the fabrication of an electron source

for the CMA.
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b) Chapter 3 describes the finite element modeling using COMSOL for the design and geometry
refinement of the CMA, and a thermionic electron source, with Einzel lens, using COMSOL's
particle tracking module.

c) Chapter 4 describes the secondary electron noise sources in the CMA, and the respective
suppression mechanisms. A process to fabricate SE suppression Faraday Cup, (FC), arrays by
Laser Beam Machining is also presented.

d) Chapter 5 contains the procedure used to measure the relative secondary electron emission,
and the absorbed current in the SE electron substrates fabricated by Laser Beam Machining,
(LBM). It also includes the development of a technique for measuring secondary electron
emission using the video output level of the secondary electron detector in an SEM.

e) Chapter 6 presents the conclusion and a sumary of the dissertation, highlights the research

contributions, and offer recommendations for future research.
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

2.1. Introduction

In 1922, Physicist Lise Meitner, Figure 2-1 (a), discovered a unique type of electron with a ‘signature
energy’ that is sometimes emitted from an ionized atom. Meitner found that atoms with at least three
electrons after being ionized sometimes became doubly ionized, by spontaneously emitting a second
electron of a specific energy in what is now known as the Auger electron. It is pronounced phonetically
similar to the “O-shjey effect” and as such should not to be confused with the helical mechanical tool with
the same spelling, the auger. The Auger process is shown in Figure 2-2.

The discovery was made and reported by Meitner in 1923 in the journal Zeitschrift fiir Physik, two
years before Pierre Auger, pictured in Figure 2-1 (b), discovered the effect. The English speaking scientific
community came to attach Auger's name to it, likely due to the fact that it was directly related to the main
topic of his Ph.D. research [4]. Until the early 1950s Auger transitions were considered nuisance effects by
spectroscopists, not containing much relevant new material information, but studied so as to explain
anomalies in x-ray spectroscopy data. Since 1953, Auger transitions started to be used as practical
techniques for surface analysis, and it is now a commonly used analytical technique in materials science.
Auger electrons are essentially photo-electrons generated in an atom by internal absorption of a florescent
x-ray, and are emitted at discrete energies for each element in the periodic table, which provides
identification of their respective atom of origin. The first step in the Auger process is the ionization of an
atom to create a vacancy. The initial vacancy can be produced by any form of ionizing radiation with an
energy larger than the binding energy, which holds the electrons in the atom. In this research, a primary

beam of thermionic emitted electrons were used as the ionization source. The source typically has an
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adjustable energy of 3 to 10 keV, and adjustable beam current. Electron source types are summarized in

Table 2-1.

@ B (b)

Figure 2-1: Photographs of Lise Meitner and Pierre Auger. (a) Lise Meitner, (b) Pierre Auger Comparative
contributions to the Auger effect [4].

2.1.1. The Auger Process

As depicted in Figure 2-2, an electron from the L shell with binding energy EL, may then drop to
fill the vacancy left by the initial ionization. During this transition, an x ray is emitted with energy equal

to the difference in energy, (EK-EL), between the K and the L shells.

. @) f’a_c_ig:a.m Level

—Las

—_—,
Electron collision
et K
EAuEE!
20,
2@

Auger electron emission

Figure 2-2: Bohr model of the Auger process.

(a). An incident electron from a focused beam creates a core hole in the 1s level. An electron from the 2s level fills in
the 1s hole and the transition energy is imparted to a 2p electron, which is emitted as an Auger electron with energy
equal to the difference in binding energy between the 1s and 2p levels. (b) In spectroscopic notation it is the K-L
energy difference yielding a KLL Auger electron, representing the 3 electrons involved. The final atomic state has two
holes, one in the 2s orbital and the other in the 2p orbital, [Public Domain] [5].

6
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As seen in Figure 2-3, in elements of low atomic number, X-rays have high probability of greater
than 50% chance of being absorbed by another electron as it exits the atom in what is known as a radiation-
less transition. If the x ray has enough energy it will be absorbed, and knock this electron out of the atom.
This electron will then carry away the excess energy it absorbs from the x-ray to become what is referred
to as a KLL Auger electron with kinetic energy Ea. KLL is the notation used, which indicates initial
ionization in the K shell, followed by the radiation-less transition from the L shell, a coincident Auger

emission from the L shell.

3 10 20 30 I
1.0 l . | 0 ¢4
> 0.8
c
® "
o
g
= 0.6 .
o
B — Auger electron yield
= ceees X- ray yield
o 04
o :
o
>~ '.’.
0.2|
0-0— -----..---....---"
I | | | I |

1 10 20 30 40 45
Atomic Number

Figure 2-3: X-ray fluorescence and Auger electron yield.

Yield is plotted as a function of atomic number for K shell vacancies. Auger transitions, (red curve), are more probable
for lighter elements, while X-ray yield, (dotted blue curve), becomes dominant at higher atomic numbers. Similar
plots can be obtained for L and M shell transitions. Coster — Kronig, (i.e. intra-shell), transitions are ignored in this
analysis [6].

www.manaraa.com



Figure 2-4 is a schematic of the electron energy levels for the element silicon, which contains 2, 8,
and 4 electrons, respectively in the K, L, and M shells. Auger transitions are notated with subscripts to
differentiate transitions, which originate from the sub shells, as it is shown for the two different LMM
transitions in silicon. The initial ionization occurs in sub shell L3 of the L shell in both cases, but the
radiation-less transition occurs in a different M sub-shell in each case as indicated by the subscripts. The

innermost electron or K shell in a silicon atom is bound to the nucleus with energy Ek.
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Figure 2-4: Auger electron energy level diagram for silicon
The three most intense Auger spectral lines are shown. One KLL, and two different LMM Auger transitions are
shown. The energies shown are from a quartz specimen [7].
To generate the Auger electron, the X-ray energy, EK-EL, must be greater than Eo, where Eo is the
binding energy of the electron to which it couples. The energy of the Auger electron is;
Ea = (Ek — EL) — Eo’ (2.1)
the Eo' is the energy, which takes into account the slight change in the unionized electron binding energy.

Energy, Eo, occurs when the atom is ionized. Figure 2-5 shows the range of the Auger spectral peak energy

typically used for detection of elements in the periodic table from lithium to uranium.
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Figure 2-5: Auger electron spectroscopy lines for the periodic table of elements.

Qualitative analysis by Auger electron spectroscopy depends on identification of the elements responsible for the
various peaks in the spectrum. The Auger electron energies are widely tabulated for all elements in the periodic table.
The figure shows the most useful Auger peaks in the KLL, LMM, and MINN parts of the spectrum as well as higher
transitions for elements above cesium. The red dots indicate the strongest and most characteristic peaks and the green
bands indicate the rough structure of less intense peaks [8].

The electrons emitted, which are characteristic of the Auger process, are able to escape from only
a very thin depth of the specimen surface. Due to their low energy, the mean free path of Auger electrons

is only a few nanometers. Therefore, they escape with their signature energy from the first few atomic
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layers of the sample surface. The escape depth does not increase with the primary electron probe energy
as it does in energy dispersive x-ray micro-analysis, (EDS). The escape depth of the Auger electrons
depends only on the specific energy level of the atom from which it was emitted. This physically limits
AES sampling depth as low as the sub-nanometer range.
2.1.2. The Cylindrical Mirror Electron Spectrometer

The Cylindrical Mirror Analyzer, (CMA), is the most commonly used spectrometer for commercial
AES systems. The CMA is the essential physics component, and it consists of a cylindrical capacitor made
of two concentric metal cylinders. A schematic of a typical AES CMA instrument is shown in Figure 2-6.
An electron gun mounted on the inner cylinder directs a focused primary electron beam onto the sample
to be analyzed. A separate gas ion source, such +Ar, is also used to mill the sample surface to clean
contamination and determine the elemental composition as a function of depth. The inner cylinder is held
at ground potential while a power supply ramps the voltage on the outer cylinder to allow tuning of the
spectrometer. The spectrometer is designed to allow electrons to pass in the annulus between the tubes
where they are subjected to an electric field and then pass through a series of apertures, which sorts them
according to their velocity. With the outer cylinder held at a specific voltage the electrons are forced to
follow a curved parabolic trajectory. Only electrons within a narrow energy range are allowed to pass.
Electrons outside this range are either too slow or too fast and are physically blocked by circular apertures
in the inner cylinder.

Figure 2-7 shows a more detailed schematic of the CMA with the outer cylinder fixed at -2000 volts.
At this voltage only Auger electrons of a fixed energy which obey the equation of motion in an electrostatic
field will travel the correct parabolic path and be counted by the detector. The CMA is a band pass filter
and the electron throughput increases with the aperture size. As with other types of spectroscopy, narrow
pass energy gives the best spectral resolution. However, the sensitivity is less due to a smaller throughput

resulting in few electrons reaching the detector. To allow for the Electron Multiplier, (EM), and end caps
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to be attached, the inner cylinder is usually extended, and circular slots are cut into it in order to allow for

electrons to pass through the spectrometer, as shown in Figure 2-7.

Data
. Acquisition
e
ﬂ_ Electron
_________ =1 [ Detector
Shields
Optional lon
Source

Figure 2-6: AES experiment with Cylindrical Mirror Analyzer, (CMA), and ion source.

An electron mounted inside the inner cylinder is focused onto a specimen and emitted electrons are deflected around
the electron gun and pass through an aperture towards the back of the CMA. These electrons are then directed into
an electron multiplier detector, (EM), for analysis. With the inner cylinder at ground potential, the sweep supply
ramps a voltage on the outer cylinder to allow tuning the spectrometer. An optional ion gun can be integrated for
depth profiling experiments [9].

Outer Cylinder Potential P =-2000 VvDC
\l Inner Cylinder Ground P = 0 volts

Analysis Specimen /

Electron Source

uger Electron Emission

Figure 2-7: Electrons pass through the coaxial arrangement of an inner cylinder and outer cylinder in the CMA.

As illustrated, a beam of primary electrons originating from the electron source are focused on the specimen to be
analyzed. Auger electrons emanating from the specimen pass through an electron transparent mesh on the inner
cylinder on their way to an encounter with the negative electric potential of -2000 volts, on the outer cylinder. In 3D
the electrons form a football shape, or oblate spheroid, as they pass left to right through the spectrometer and land on
the electron multiplier detector on the right.
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A good review of the history of the development of the electron spectrometer is given by Roy and
Trembley [10]. The CMA geometry offers the advantage of allowing many electrons to be processed
simultaneously through the annular space formed between the inner and the outer cylinders. Electrons
emitted from a point source located at a Working Distance, (WD), away from the entrance of the
spectrometer will enter this annular space at some velocity. As in the case of a parallel plate device, the
electrons are repelled by a negative potential on the outer cylinder. The electrons travel through the
spectrometer in the shape of an oblate spheroid shell, which is like an American football skin, and they
come to focus at a point, again at the same distance WD, after emerging from the opposite end of the CMA.
Only electrons of a specific velocity will make it through the potential gradient and arrive at the point WD
along the axis of the spectrometer. The voltage on the outer cylinder is swept in order to allow for a range
of electron velocities to pass through the spectrometer and be counted by the detector. Figure 2-8 shows
typical Auger spectra taken on the microCMA currently being manufactured at RBD Instruments Inc. in
Bend Oregon. Shown in (a) and (b) are plots of raw Auger data on pure Cu and Ag respectively, which
show the elemental peaks on top of a large background signal. As the voltage on the outer cylinder sweeps,
the electrons arriving at the detector are counted and plotted on the vertical axis. The horizontal axis shows
the kinetic energy in electron volts, eV. Each element detected may have several peaks in the spectrum as
presented in these plots. This data is smoothed and differentiated using a Savitzky-Golay digital
smoothing filter and differentiation algorithms [11]. Figure 2-8 (c) and (d) show the Cu and Ag spectra
respectively, after the raw data has been smoothed and differentiated. The resultant peak to peak
magnitudes are then used to quantify the elements present in the sample, by comparison with the

magnitude of peaks on pure elements under the same experimental conditions.
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Figure 2-8: Example Auger spectrum from completed spectrometer design.
Shown in (a) is a plot of the raw Auger spectrum data for copper as collected from the RBD Instruments Inc.
microCMA spectrometer on a pure copper sample. (c) shows the raw data differentiated to obtain the peak to peak
height of the Cu peak. The plot in (b) shows the raw spectrum data for silver, which is again differentiated as shown
in (d). The primary electron beam energy was set at 3 KeV with beam current of 300 nA. [2] [11].
2.2. Comparison of AES with STEM and EDS

Figure 2-9 shows a beam of primary electrons converging on the sample along with the relative
escape depth of the various types of radiation, which are commonly collected to perform elemental
analysis. As shown in more detail in Figure 2-10, the self-limiting size of the Auger analysis volume allows
for elemental composition to be determined without interference from the substrate material. The Auger
escape range varied from about 0.4 to 5 nm across the periodic table. An Auger electron generated greater
than 5 nm below the surface will lose its discrete energy due to inelastic collisions, and so its atom of origin
cannot be detected. Instead it will become part of the large background of secondary electron noise, which
is concomitant in the process. The electrons emitted from the sample, both Auger and secondary, are
counted and energy analyzed by the electron spectrometer. The most common electron spectrometer

separates the electrons by their kinetic energy in an electrostatic field. Using an electron multiplier, the

number of electrons emitted at each kinetic energy is typically binned in increments of 0.05 to 1.0 eV. The
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data is converted from analog to digital and the resultant spectrum is displayed as a plot of the number of

electrons vs. energy.

Primary Electron
Secondary Electrons Beam

Auger Electrons
04-5nm

Backscattered
Electrons

Characteristic X-rays
Sample 1-3um
Surface

Figure 2-9: Electron beam sample interaction.

This drawing shows the relative escape depth of characteristic x-rays, and several types of electrons. In energy
dispersive x-ray micro-analysis EDS, the escape depth is 1-3 microns and increases with beam energy. Auger escape
is independent of beam energy, and only depends on its atom of origin, i.e. its energy [12].
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Figure 2-10: Nanoscale sampling depth of Auger electrons.

Auger electrons enable analysis of either particle above including a nanoscale, (<0.1 micron), particle with no
interference from the substrate as illustrated on the right. Auger electrons leave only from the particle and not the
substrate. X-ray EDS can only be done on larger, (>0.1 micron particles), here on the left, without substrate
interference Adapted from [13].

The Auger effect has profound implications in that it is one of only a few techniques, which can
perform defect analysis at the scale necessary for modern VLSI circuits and other nanoscale devices. Figure
2-11 shows typical differentiated auger spectrum from analysis of a particle defect in a VLSI process.
Because the Auger signal is very small with a large secondary electron background, the spectrum is usually
differentiated to enhance peak detection. Here, a secondary electron SEM image of a large 500 nm defect
that was detected on a wafer in a tungsten, (W), etch process is presented. The W etch uses a Sulfur
Hexafloride, (SFs), plasma to remove the W, which is deposited on the wafer on top of a titanium nitride,
(TiN), adhesion layer [14]. The differentiated Auger spectra, red and green, reveal that the particle is a
composite of aluminum and titanium. The point analysis spectra taken on different spots on the particle

in Figure 2-11 indicate the particle may be composed of physically segregated areas of Al and Ti. An Auger

electron map was then performed, which illuminates the elemental distribution on the particle. In Figure
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2-12, the top image, the same particle again imaged with standard secondary electron (SE) detector can be
seen. The bottom image shows the same particle imaged using the Auger spectrometer as the electron
detector. The electron beam is scanned over the sample just as in the SE image, but the spectrometer is set
to only allow for Al or Ti Auger electrons to pass. Two separate images were scanned, one set for Al
(green), and the second set for Ti (red). The Auger peaks were then superimposed to produce the composite
shown. The brighter green and red, show where the larger Al and Ti Auger peaks appear, thus showing a
map of the elemental concentrations. It was concluded from the Auger elemental map that the aluminum
particle originated from the interaction between an etch by-product of the TiN adhesion layer and the

aluminum vacuum deposition chamber.
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Figure 2-11: Particle defect from VLSI process showing typical auger spectra.

Spot analysis was performed at 3 different points on a nanoscale defect in a VLSI tungsten etch process. This is a
good demonstration of the ability of Auger spectroscopy with SEM to perform nanoscale analysis without interference
from adjacent structures [14].
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Figure 2-12: Elemental Scanning Auger Microprobe, (SAM), image.

The left image is a Scanning Electron Microscopy, (SEM), image showing a nanoscale defect with a 500 nm scale bar.
The right image shows the scanning auger electron elemental map performed on the same defect. Shown is the
distribution of Al and Ti demonstrating the high spatial resolution of Auger spectroscopy [14].

This is a striking example of the ability of Auger spectroscopy to perform Non-Destructive
Evaluation, (NDE), analysis on particles with very small analytical volume, and separate the elemental
composition. This level of detail is not possible using other analysis techniques such as EDS or STEM where
destructive analysis of the sample is required.

Before Thomsons discovery of the electron, and since the development of the cathode ray vacuum
tubes, improvements in vacuum technology have been the key to unlocking the secrets hidden within
matter. Experiments with electrons under high vacuum are beginning to reveal their true nature, and have
lead us to the current understanding of the quantum nature of matter. The cathode ray tube remained the
basis for the display of video on consumer electronics until the recent development of thin film based flat
panel displays. While cathode ray vacuum tubes are no longer used as main stream displays, they are still
widely used in the form of SEM instruments capable of probing the structure of matter down to the atomic
scale. Early on in the use of the SEM and other scanning beam instruments such as the Scanning Auger

Microsope, (SAM), it was noticed that the electron beam deposits contamination on any surface it contacts,

which is the residual of gas in the vacuum system in the form of Volatile Organic Compound, (VOC), which
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are ubiquitous in nature. In fact before taking data, the “adventious hydrocarbons” were actually used to
calibrate the spectrometer, which was then refered to as an ESCA or electron spectroscopy for chemical
analysis, [15].

STEM, AES and SAM are expensive to purhase and maintain. However, they are members of the
few methods, which elemental composition at the nanoscale without interference from surrounding
structures can be probed. With STEM, the specimen must be mechanically cross sectioned and thinned to
about 50 nm to allow for the electron probe to pass through it attenuated, but not absorbed. STEM sample
preparation can be a very laborious process, and can sometimes introduce defects, which can then hinder
the analysis. However, AES requires no sample preparation. The less the specimen is altered by handling,
the better it is for AES. AES analysis can be performed on bulk unaltered materials, and no mechanical
thinning is required to get small sampling volumes of a few cubic nanometers.

2.3. Comparison of Electron Sources

Part of the design process in any charged particle optical system starts with choosing a suitable
particle source. The diameter of the beam can vary over a wide range, which is usually between 1 nm and
100 microns, and depends on the type of electron source and the design requirements of the system. The
size of the area from which the electrons are emitted is referred to as source size. The source size and
physical constraints, such as the available length of the electron beam travel, play a role in the final beam
spot size on the sample. As seen in Section 2-2, the beam spot diameter along with the escape depth of
Auger electrons forms the volume of the analysis disk on a flat sample.

The standard thermionic electron source uses Joule heating of a V shaped tungsten wire 5-100 um
in radius heated to ~2500 to 3000 K. Lanthanum hexaboride, (LaB6), is desirable due to its long life and
high brightness. It is typically a rod of sintered powder about 1 mm in diameter with a tip machined to a
few microns in radius. It has a very low work function and its high brightness is obtained by operating it

at a temperature of ~ 1900K. However, it requires a vacuum of 104 Torr, which is usually achieved by the
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addition of an ion pump to the SEM system. The emission current density, ] delivered by thermionic
sources depends on the temperature, T, and is expressed by the Richardson law;
Je= AT?exp(-Ew/kT) A/cm? (2.2)

where Acis a constant of the material, which is referred to as the Richardson constant, and Ew is the work
function. Higher temperatures deliver greater beam current, but the tradeoff is an exponentially decreasing
lifetime due to thermal evaporation of the cathode material.

Field emission sources typically consist of a tungsten rod sharpened to a point, which is typically
5-100 nm in radius. The sharp tip helps provide the very high electric fields needed to pull electrons out
of the metal. Single crystal tungsten is typically used because it is a mechanically strong material. In order
to get the desired brightness in electron current, the electron extraction potential is held as high as possible.
In fact, the fields are held so high that the tungsten tip is at the threshold of self-destruction due to
mechanical stress, which is induced by the electric field. The emission current density, Jc, delivered by
Field Emission, (FE), depends on the electric field, E, and follows the Fowler-Nordheim equation [16];

Je=BE?exp ( - 6.8 x 107 $*2/E) (2.3)

where B is a field-independent constant of dimensions (A/V?) and E is the applied field (V/cm). Cold field
emission sources have become the source of choice in electron microscopes to achieve the highest
resolution. However, they have seen little use in Auger spectrometers due to their instability in output,
which becomes an issue when quantitative elemental analysis is needed. The instability is caused by atoms
that are adsorbed onto the surface of the tip [17]. This changes the work function, which results in large
changes in the emission current. To minimize the current fluctuations, the electron source must be operated
with ion pumps in an extreme Ultra High Vacuum, (UHV), environment, 10-° Torr, or better, which comes
with a significant increase in cost.

The latest development in electron sources is the thermal field emission source. It is now the most

commonly available in many commercial Auger spectroscopy systems and electron microscopes. This
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source combines the tungsten tip of the field emission source and the heating of the thermal source. The
tip is operated at a temperature of ~ 1000 to 1800 K, which makes it less sensitive to gas adsorption.
Although the "Schottky source” or Field Emission Gun, (FEG), are commonly used names, it is more
properly called a "thermionic assisted field emitter" since the electrons escape over the work function
barrier by both thermal excitation and field emission. Its brightness is almost as high as a cold field
emission source, with a slightly larger tip size of 20 nm and an intermediate energy spread. The tungsten
is usually coated with zirconium oxide to reduce the work function. It requires a vacuum in the range of
10° Torr, which means a more expensive pump than is required for a thermal emitter source.

In the early stages of this research, it was proposed to use nanofabrication techniques to fabricate
a field emission source. Several attempts were made to fabricate this source from an array of needles each
of which would act as an electron source to average out the current emission instablility of cold field
emission electron sources. This process is presented in section 2.4 on Electron Beam Induced Deposition,
(EBID). After several unsuccessull attempts, this work was abandoned in order to use a more conventional
tungsten thermionic electron source. Thus a thermionic electron emission source was finally chosen for
the CMA design and simulations. Table 2-1 shows a comparison of the most commonly used electron
sources used in an AES CMA [18].

Table 2-1: Comparison of different types of electron sources. Adapted from [18]

. Source | Energy Vacuum
Source Temp.(K) Brightness | = e spread | requirement | Work
emp. 2 )
type (Alcm?/sr) (nm) (eV) (Torr) function(eV)
rungsten - o744 ~105 | 25000 | 2-3 10° 45
thermionic
LaBs 1900 ~10° 10000 2-3 108 2.4
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Table 2-1 (Continued)

. Source | Energy Vacuum
S;)uré:e Temp.(K) ?&g?ggi; size spread | requirement fun\c/'\c/i?);lZeV)
yp (nm) eV) (Torr)
Thermal
(Schottky) 108 9
210 field 1800 10 20 0.9 10 2.7
emitter
Tungsten
field 273 ~10° 5 0.22 1010 4.5
emitter

2.4. Electron Beam Induced Deposition of Field Emission Electron Source

With current technologies it is possible to fabricate devices that have at least one dimension in the
nanometer range. When the dimension of these nanostructures approaches the De Broglie wavelength,
new properties emerge due to quantum mechanical effects that can be the basis for the development of a
new generation of devices and materials [19]. These nanoscale devices can be made with zero, one, or two
dimensions, and are known as quantum dots, wires, and wells respectively. One emerging technique to
create nanostructures is to use a highly focused beam of electrons as an energy source to deposit materials
in a process similar to Chemical Vapor Deposition, (CVD). This technique has become to be known as
Electron Beam Induced Deposition, (EBID). EBID was used to attempt to fabricate a field emission array
electron source for the CMA analyzer.

Since the earliest use of the electron microscope, the electron beam has been observed to deposit
contamination on areas where it irradiated the specimen. As with Auger electrons spectroscopy, it was
long thought to be a nuisance, and is still a serious problem when it affects high resolution imaging, and
or analysis using Energy Dispersive Spectroscopy, (EDS), or Auger Electron Spectroscopy, (AES). It is

assumed that this contamination is due to the interaction of the electron beam with hydrocarbon
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contamination present in the vacuum system. The introduction of Ultra High Vacuum, (UHV), systems
significantly reduced these problems, but the carbon was still present. The vast reduction in impingement
rate of these hydrocarbons in UHV systems should have eliminated this problem. However, these
“adventitious hydrocarbons”, as they have come to be called, are observed to be present even without
exposure to an electron beam. The mechanism of the deposition of carbon on a specimen when irradiated
by an electron beam has been the subject of some debate [20]. It is proposed that hydrocarbons, either
already present on the surface as adventitious hydrocarbons, or while impinging the surface from the
vacuum are being cracked and deposited similar to Chemical Vapor Deposition, (CVD). In 1976 Broers
and his group were working on novel lithography techniques and decided to take advantage of the carbon
deposits to do high resolution lithography. Since then research continues along this avenue with the
intentional introduction of various gases, called precursors, to deposit other materials such as silicon,
tungsten, platinum, iron, gold, and silicon dioxide. When using adventitious hydrocarbon, the technique
has become to be known as contamination lithography. When gaseous precursors are intentionally
injected, the technique is referred to as Electron Beam Induced Deposition, (EBID). In most cases a modified
Scanning Electron Microscope, (SEM), or systems designed to do Electron Beam Lithography, (EBL), are
used to perform EBID studies. Figure 2-13 depicts a proposed Field Emission Array, (FEA), electron source

preliminary design.

[]
glit..
ald LT

AbA,
at b

(N )
i. ‘l
L)
L]

‘.. .
LTYYYY LA

L TTTTPITIL

22

—

www.manharaa.com




In the past 20 years, commercial instruments have become available, such as the dual beam
Focused Ion Beam, (FIB), instrument, which use either an ion beam, electron beam or both to deposit and
or etch lithographic patterns. FIB systems are designed to purposely introduce various precursor gases,
which are decomposed by the beam to form the deposit.

2.5. EBID Mechanics

The typical EBID process is depicted in Figure 2-14. A finely focused electron beam is used to
decompose precursor gases adsorbed on the surface of a substrate in a vacuum system. EBID can be done
inside the vacuum chamber of any energetic particle beam instrument, such as a Scanning Electron

Microscope, (SEM), or a dedicated Electron Beam Lithography, (EBL), system as described previously [21].

Elecron or lon Beam

By-products
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Fiqure 2-14: A finely focused electron beam is used to decompose precursor gases adsorbed on the surface of a substrate
in a vacuum system. Adapted from [19].

In systems other than the FIB, which are not purposely designed to do this, the instrument has to
be modified to allow for the introduction of precursor gases. In the typical experiment a precursor gas

injection tube is brought near the sample surface, which is typically a few hundred microns from where
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the deposition is to take place. Gas flow is precisely controlled to allow the system vacuum pumps to
maintain a background pressure less than 10-¢ Torr. The electron beam is then positioned over the area
where the deposition is to be recorded and finally scanned in a pattern to produce a desired result. The
electron beam decomposes the gas, which creates a deposition, and proceeds to penetrate into or through
the substrate, depending on the beam energy, and the average density of the material. The higher the beam
energy and the lower in density the materials, the greater the depth of penetration. Surplus precursor gas,
and reaction by-products are then removed by the instruments vacuum system. The adsorption rate of the

precursor gas on the substrate is given by [22];

dN/dt={gF (1-N/NO)} —{N/t}-{qN f} (2.4)

where N, (#/cm”2), is the density of adsorbed molecules, NO, (#/cm”2), is the molecule density in a
monolayer, g is the sticking coefficient, F, (#/cm”2/sec), is the molecular flux density arriving on the
substrate; t is the mean lifetime of the adsorbed molecule; g, (cm”2), is the cross section for dissociation of
the adsorbed molecules under electron bombardment, and f, (#/cm”2/sec), is the electron flux density. The

layer growth rate R, (cm/sec), is:

R = vNgf (2.5)

where v, (cm”3), is the volume occupied by a dissociated molecule. The first term of the adsorption rate
dN/dt controls the adsorption of the precursor on the substrate. The second term is the loss by thermal
desorption to the gas phase with time constant, t. The third term gives the electron induced dissociation
rate of adsorbed molecules. From dN/dt it is evident that the growth rate depends on the cross section for
dissociation of molecules in the path of the electron beam. The accelerating voltage of the electron beam
can be adjusted to optimize the deposition efficiency. As a rule, the lower the energy, the higher the
electron cross section, which yields a higher probability of electron interaction. At too low of an energy the

cross section will drop off, which gives the lower limit. In addition, a lower mean free path, or higher
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pressure will increase the EBID efficiency. Higher pressures will also result in an increased probability for
electron-molecule collisions. EBID can be performed inside the vacuum chamber of any energetic particle
beam instrument, such as a Scanning Electron Microscope, or a dedicated Electron Beam Lithography,

(EBL), system. However, it can also be performed in a Scanning Transmission Electron Microscope,

(STEM), or FIB.
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CHAPTER 3: FINITE ELEMENT MODELING OF THE CMA DESIGN
3.1. Introduction

Several finite element modeling software packages were used to attempt to simulate the CMA
design. In the first attempt to simulate the CMA, the program SIMION was used and more recently ANSYS
was also used for simple parallel plate capacitor simulations. In early versions of SIMION the smallest
dimension allowed was 1 mm. Features in the design of the CMA require sub-millimeter accuracy. In the
end, COMSOL was chosen due to its flexible unit system, and the built in ability to do multi-physics
applications. COMSOL provides a cross-platform finite element analysis. Its solver and multi-physics
simulation package has the ability to solve other types of engineering problems, which may arise in design.
It was anticipated that due to the small size of the CMA design, heat radiation, and heat transfer problems
could arise. COMSOL possesses modules ready to assist with these problems. It also possesses optics
modules for future addition of simulations in the optical region of the EM spectrum. The EM spectrum is
where lasers or UV light sources will be applied for future advanced design changes to the spectrometer.
Future advanced designs may include Ultraviolet Photoelectron Spectroscopy, (UPS). This inclusion
would provide an ultraviolet ionization source, or laser, which would be used for initial ionization instead
of the electron source in the AES. The AES was under study in this research.

The simplest type of spectrometer considered in early work on electron spectroscopy was that of a
parallel plate capacitor. Geometrically, because the CMA is axially symmetric any planar cross section,
which includes the axis of the inner cylinder, becomes a parallel plate capacitor. Figure 3-1 presents a
Computer Aided Design finite element simulation of a parallel plate capacitor using COMSOL.

The dimensions are in meters, the bottom plate was set at ground potential while the upper plate

was set to minus 2000 volts. _An electron is shown entering the gradient from the right at approximately
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3.00 107 m/s giving an energy of 2700 eV. The electron is repelled by the top plate, since V is negative with

respect to ground, providing the resultant trajectory.
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«Electron trajectory is with top plate BC -2000
volts on the top plate, with 2cm separation.

*Released at 45 deg. from horizontal

at~0.1cor2700 eV.
Figure 3-1: COMSOL FEM solution for a parallel plate capacitor.
As seen in this plot the colored lines show the gradient of the electric potential between the plates to simulate the inner
and outer cylinder of the CMA. Also shown is the field fringing around the edges, where an electron flight solution
is not so easy to solve analytically. The electron trajectory shows an almost exact agreement with the analytical
solution with a maximum height of 0.0135 meters. The initial input velocity for the electron is one tenth the speed of
light, which is equivalent to an electron energy of 2700 eV. The initial angle of entry through the inner cylinder plate
is 45 degrees from horizontal with a gap of 2 cm between the inner and outer cylinder.

If it was assumed that the plates were of infinite dimension, the electric potential would be a
uniform gradient of parallel lines, and it would be a simple matter to solve the problem analytically. This
can be seen in the center of the parallel plate capacitor model shown in Figure 3-1. Due to the plate edges,
the electric potential bends around the discontinuity in the geometry forming what is referred to as fringes.
In this case, the finite element method can be used to create an array of mesh of points around the plate
edges and solve for the Partial Differential Equations, (PDE), which, in this case, are the Poisson equations
at each of the points. The desired accuracy and precision of the problem is simply a function of the number
of points, computing power, and the time needed to solve the problem. The COMSOL multi-physics
program assists in creating a CAD design of the geometry. It sets up the appropriate boundary conditions,

material properties, and creates the mesh, which was used to solve the problem. The program has a variety
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of built in post processing capabilities, which provide for graphical interpretation, and visualization of the
solutions. It also has a built in particle tracking function, which provides for injection of a particle at a
given initial location and velocity. COMSOL then plots the resultant trajectory through the electric
potential gradient as shown in Figure 3-1. The parallel plate capacitor is perhaps the simplest device
conceived that can be easily constructed and modeled for separation of ballistic electrons of different
energies.
3.2. Spectrometer Design and FEM Modeling Process

The first step in the FEM simulation is to create a to scale CAD drawing, which is input into
COMSOL as the geometry of the problem. Figure 3-2 shows the geometry of the spectrometer used to

simulate this double pass CMA design. The CAD design was drawn to scale directly in the COMSOL

program.
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Figure 3-2: COMSOL CAD FEM model for proposed double pass electron spectrometer.

The geometry components labeled CA1-CA3 are circular apertures in the inner cylinder, which are set at ground
potential. The beam from the electron source inside the inner cylinder exits from aperture A1. Apertures A1-A3, and
the entire inner cylinder are all at ground potential. The collector, analyzer, and focus, were set to -650, -750, and -
90 volts respectively. Auger electrons at 1000 eV enter the circular acceptance aperture traveling from right to left
as seen in the solution.
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Each component of the geometry is assigned a boundary condition, which, is input as a variable
into the solver. An additional boundary condition, labeled as electrical insulation, defines a finite outer
boundary for the problem. Next, the entire domain is meshed automatically by COMSOL. The mesh may
be refined manually where there are edges and discontinuities in the geometry. After the mesh is
generated, the problem is then solved and the gradient of the electric potential is plotted. With the electric
field known at every point, COMSOL has an option, which allows for electron flight simulation by solving
the equation of motion.

Some models of commercial electron spectrometers use two CMAs back to back to form what is
known as a double pass CMA. The double pass CMA spectrometer allows for higher resolution of the
Auger spectral peaks. It also allows for a larger distance between the nose of the spectrometer where the
electrons enter, and the sample. This distance is commonly referred to as the Working Distance, (WD).

The design is a scaled down version of a commercial double pass CMA, which was designed to be
mounted on an 8 in diameter UHV conflat flange. A photo of the outer cylinder taken out of a large
commercial CMA and the miniature CMA is shown in Figure 3-3 for comparison along with a ruler for
scale. The miniature CMA is scaled down to % the size of the 8 in mount CMA to allow for mounting on a

2 % in conflat flange.

Figure 3-3: Photo comparison of outer cylinders from miniature and commercial CMA.
The small cylinder on the left is the outer cylinder from the miniature CMA, with the large commercial outer cylinder
shown on the right. Both cylinders are made from pure oxygen free high temperature copper OFHC.
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Figure 3-2 depicts the geometry of this model, and shows all the apertures and elements, which
filter the electrons emitted from the specimen. All the components of the spectrometer, which are included
in the simulation are labeled. An electron gun mounted in the center of the spectrometer is used to focus
a beam of electrons through aperture A1l on to the specimen. The primary electron beam acts as a point
source and causes the sample to emit SE’s, BSE’s, and Auger electrons radially in all directions. Those
emitted at the proper angle will enter the annular acceptance aperture on the way into the collector section
of the spectrometer. The electrons are repelled by a negative potential set on the outer cylinder, which is
labeled in light blue as Collector Volts C. The electrons then encounter an additional repulsion from a
component labeled as Focus ring with a boundary condition of Focus Volts F. The focus ring directs the
electrons through the CA1 circular aperture. The focus electrode was added to provide a shorter length
spectrometer while still maintaining a large working distance. The electrons that pass through the circular
aperture CAl then travel through aperture A2, which separates the collector CMA section from the
Analyzer section of the CMA. After emerging from aperture A2 the electrons pass through the circular
aperture C2 where they encounter a negative potential from the outer cylinder of the electron analyzer
section of the spectrometer. The analyzer is labeled as Analyzer Volts A. The inner cylinder of both sections
of the spectrometer was set with a boundary condition of ground potential. The electron trajectory along
this entire path is plotted in black in the COMSOL solution. The solution is shown in the lower right section
of Figure 3-2. Itis shown with a larger view in Figure 3-4.

The electrons in the above simulation were given an initial potential E of 1000 volts at 32.5 degrees
from the horizontal. The boundary conditions and spectrometer voltages are shown in Table 3-1 along
with the electron energy, and the velocity components, which are required inputs for the equation of

motion.
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Table 3-1: Comnstants and variables input into FEM for solution of the double pass CMA.

Name Expression Value Description

E 1000 1000 Energy eV

C -650 -650 Collector Volts
A -750 -750 Analyzer Volts
F -90 -90 Focus ring Volts
Viot -(2*Ej/9.1095e-31)".5 -1.875525e7 Velocity m\s
Ej E*1.60217653e-19 1.602177e-16 Energy J

eVvx Vtot*cos(R) -1.581802¢e7 Velocity X
eVy Vtot*sin(R) -1.007719e7 Velocity Y

R T*2*pi/360 0.567232 Radians

T 32.5 32.5 Theta Degrees

Figure 3-4 provides the solution in detail. The electron trajectory is plotted with the electron
potential, in volts, shown as both stream lines, and as a range of colors with 0 volts as dark red, and -750
volts as dark blue. The electron path is shown as a black line and the dimensions are in meters. The
electrons leave the sample under analysis from the right. They travel from right to left through the
spectrometer at approximately %2 of one percent of the speed of light. One hundred electrons were released
along a line representing an electron beam spot the size of 100 microns in diameter.

The solution shows the designed geometry of the spectrometer. It also shows the set of boundary
conditions required to successfully pass 1000 eV electrons through the spectrometer. These electrons are
counted by an electron multiplier detector attached to the exit aperture labeled A3 in Figure 3-2. The output
from the detector in this simulation, if it were plotted, would show a peak in the Auger spectrum at 1000

eV kinetic energy.
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Figure 3-4: COMSOL CAD FEM solution for proposed double pass electron spectrometer.

3.3. FEM Model of Electron Source with Einzel Lens

Figure 3-5 shows the geometry and COMSOL FEM solution for the proposed thermionic electron
source with Einzel lens, which is mounted inside the inner cylinder of the CMA. This electron source is
used to focus a beam of electrons on the sample. This design consists of three metal washers, which are
shown in a cross section view in Figure 3-5. The center washer is electrically insulated from the top and
bottom washers, and is set at a potential of -100 volts. By varying the focus voltage on the center washer,
the focus length or WD of the electron beam can be adjusted such that the beam is in focus on the surface
of the sample to be analyzed. In this simulation, 100 electrons were released from a line above the washer
on top in order to simulate the emission from the surface of a tungsten thermionic emission source. The
electrons were released into the Einzel lens with an initial velocity equivalent to 3 KeV of energy. Figure 3-6
shows the Einzel lens solution in detail with the electric potential plotted as colored stream lines with red
indicating 0 volts and blue indicating -100 volts. As shown in the solution plot, the lens acts to focus the
electron beam to a point below the lens and the focal distance is adjusted by varying the voltage on the
center washer. As the voltage is increased, the focal point will move closer to the lens. With a focus voltage

of zero, the beam will go through the lens unchanged from its initial diameter.
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Figure 3-5: COMSOL CAD FEM solution example of electron source with Einzel lens.
The Einzel lens geometry consists of a concentric arrangement of 3 metal washers. The center washer is the focusing

element, which can be adjusted to focus a beam of electrons, which enter from the electron source. The focus voltage
was set to -100 volts to focus a beam of 3 KeV electrons entering from the top as shown.
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CHAPTER 4: SUPPRESSION OF SECONDARY ELECTRONS IN CMA

4.1. Introduction

In any type of spectroscopy, noise in the spectrum diminishes the sensitivity of the spectrometer.
This becomes a problem, particularly when high sensitivity is needed, such as when trying to identify
elements at a trace level in the sample. Typical detection limits for Auger spectroscopy have an order of
magnitude range from 0.1 to 1% for the elements in the periodic table. Silver being the most sensitive and
yttrium the least. However, as shown in Figure 4-1, with large electron beam current, and large
concomitant beam size, the sensitivity can be quite high, as high as 0.001 % of a monolayer. The sensitivity
limit is set by the signal to noise ratio. A typical signal to noise ratio is 800:1 for the Cu LMM line. This
ratio allows for a detection limit of about 1% of a monolayer at a special resolution of 0.1 pm with fixed
primary beam current of 10 nA [23].

The detection limit may also be set by the beam current available, which depends on the instrument
settings and the type of electron source used. The sensitivity of the material under analysis to damage by
the electron beam is also a limiting factor to the magnitude of the beam current density, which can be
applied. Using an electron beam at just 3 kV energy, with a small current of 10 pA, 10 x 10-2 amperes, and
a spot size of 1 nm diameter, the current density is 1000 A/cm2. Thus, power density levels can exceed
several megawatts per cm? To put this in perspective, the recommended current capacity of copper wire
is a few hundred A/cm? depending on the insulation and the ambient conditions. The electro-migration in
copper interconnects becomes a problem in the 105 to 10 A/cm? range in Very Large Scale Integrated

Devices (VSLI) [24].
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Figure 4-1: Detection limit of copper in a film one atom thick.
The limit is a function of the electron beam size for two types of electron source. Lanthanum Hexaboride, (LaBs), is
plotted in red and Field Emission Gun, (FEG), in blue [24].
4.2. Electron Spectrometer Background Noise

Sources of noise in the CMA spectrometer have been a concern since early designs [25]. One main
source of noise is from scattering of electrons on the inside surfaces of the spectrometer. Figure 4-2 (a)
shows a typical CMA experiment in which a focused beam of electrons from the electron gun excite
emission of radiation from the sample [26]. As shown earlier, in Figure 2-9, many types of electrons and
other forms of radiation are emitted from the sample due to the interaction of the primary beam with
matter. The radiation scatters in all directions, but only radiation with a narrow solid angle can enter the
inside of the spectrometer through the aperture opening in the inner cylinder without being physically
blocked. Depending on the spectrometer design only those electrons, which subtend the angle o of
approximately six degrees can make it through to the inner cylinder. Considering the geometry in Figure

4-2 (a), it can be observed that electrons will land along some distance represented as length B, on the inside
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surface of the outer cylinder. With the spectrometer tuned to a specific energy, only those electrons within
a small pass energy, AE, will reach the detector unimpeded.

I Cylind
Outer Cylinder\ B nner/ i

I Y L

Exit Aperture

b

< Electron
— «_  Detector
= Field Trimmers

Secondary Electron Trajectory "Magnetic Shield

(a)

Outer cylinder

Incident Inner cylinder

electrons

optic axis
(b)

Figure 4-2: Possible sources of secondary electron noise in the CMA [26] [27].

(a) When the spectrometer is tuned to pass low energy electrons, electrons from the sample with higher energies than
this may strike the inner surfaces of the outer cylinder and generate secondary electrons. Some of these may have the
right energies and angle of emission to reach the electron detector, as depicted. (b) Electron trajectory simulation of
secondary electrons generated at the outer cylinder with random energies up to those used to generate them. The case
depicted is for an incident beam of 1000 eV and pass energy of 500 eV. 1t is obvious that all secondary electrons are
accelerated towards the inner cylinder, while for the backscattered electrons, the majority strikes the field trimmers,
but some manage to exit from the inner cylinder aperture.
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These electrons are labeled secondary electron trajectory in Figure 4-2: Possible sources of
secondary electron noise in the CMA . Electrons with higher energy than the pass energy, AE, will strike
the outer cylinder generating SE’s and BSE’s, which can bounce in many random directions inside the
spectrometer. Those electrons that are able to reach the detector create noise in the spectrum.

Figure 4-2 (b) shows an electron trajectory simulation of secondary electrons generated at the outer
cylinder with random energies up to those used to generate them. In this simulation, the electron energy
was set to 1000 eV, with the spectrometer set for a pass energy of 500 eV [26]. A large number of SE’s and
BSE’s scattering from the outer cylinder may hit the inner cylinder. Then they may undergo multiple
reflections inside hitting the outer cylinder once again, along the length of the outer cylinder represented
as length C in Figure 4-2 (a). After multiple scattering events, the kinetic energy of these electrons will
ultimately be converted to other forms of radiation. Additionally, many electrons will ultimately make
their way out of the exit aperture of the inner cylinder, and contribute to the noise background in the
spectrum.

In Figure 4-3 (a), Goldstein shows the complete spectrum of electrons emitted from a sample
bombarded with a focused electron beam from an electron source [28]. Therefore, the electron spectrometer
must contend with a large amount of electrons, which may enter over a broad energy range, labeled as
region Il in Figure 4-3. The width of the SE peak in region I is greatly exaggerated here just for illustration.
If drawn to scale it would appear as a narrow line. The actual SE peak width is shown in Figure 4-3 (b) to
be only ~5 eV FWHM, with a peak of around 2.5 eV. Figure 4-4 shows a more descriptive picture of the
energy range along with the addition of a few Auger electron peaks, which are riding on top of the broad
range of inelastic BSE’s. These peaks are located between the SE peak and the low loss peak, which

represent elastic BSE’s [29].
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Figure 4-3: Complete normalized energy distribution of electrons emitted from a target.

(a) Region I identifies elastically backscattered primary electrons of energy Eo. Region III are secondary electrons
ejected from the sample by the primary electrons. The broad region II, between region I and 1II are backscattered
electrons, which have undergone inelastic collisions in the sample. (b) If Eo is 1000 eV, the width of region 111 is very
narrow, only 5 to 10 eV, as shown in a magnified view on the right [28].
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Fiqure 4-4: Energy distribution of electrons emitted from a target with Auger peaks.

The two large peaks in the spectrum are secondary electrons SE, and Low loss BSE. The region between the SE and
Low loss peaks show a wide background of inelastic BSE on top of which the Auger electron peaks are found. The low
loss peak represents the energy of elastically scattered BSE at the energy of the primary beam focused on the sample.
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4.3. Secondary Electron Suppression

In CMA design, attempts to suppress the SE noise in the Auger spectrum from the electron
scatterings mechanisms, discussed in Section 4.2, have met with limited success. Experiments by Bakush
and Gomati in which the outer cylinder was machined with 0.5 mm saw-tooth grooves showed almost no
difference in signal to noise ratio in the Auger spectrum compared to a smooth unaltered cylinder [27].
Figure 4-5 shows the saw-tooth pattern, which was designed to block errant SE’s, and reflect the electrons
in a direction opposite to the detector.

—F

0.5mm

o

Figure 4-5: Mechanically machined saw-tooth grooves for SE suppression.
Grooves in the shape of a saw-tooth were cut into the outer cylinder at an angle of 45 degrees, and a depth of 0.5 mm
with a pitch of 32 teeth per inch [27].

In this experiment, the original smooth outer cylinder from a commercial CMA was replaced with
a metal cylinder, the same in all respects, except for having the saw-tooth pattern machined on the inner
surface of the outer cylinder. In addition, a primary beam voltage of 5 kV was used at a current of 10+
Amperes, which yielded a beam spot size of 0.5 microns. Auger spectra were collected on pure Au and Cu
samples to determine the difference in signal to noise ratio between the original commercial smooth outer

cylinder, and the saw-tooth machined cylinder. The results are presented in Table 4-1.

Table 4-1: Peak to background ratios measured from Auger spectra on Au and Cu. The ratios are nearly unchanged
when comparing the smooth outer cylinder with saw-tooth cylinder designed to suppress SE’s [27].

Type of Cylinder (P/B)sss,cu (P/B)325,ag

Smooth Surface 0.017 +/- 1.0% 0.35 +/- 1.0%

Sawtooth Surface 0.016 +/- 1.0% 0.36 +/- 1.0%
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4.4. Electron Beam Deposition of Thin Films

Thin films of silicon were deposited by high power Electron Beam Physical Vapor Deposition, (EB-
PVD), on OFHC substrates as a first attempt to improve the signal to noise ratio in the spectrometer. The
process is depicted in Figure 4-6. EB-PVD is a very versatile tool for research in thin film devices. With
available power levels of hundreds of kilowatts, nearly any substance can be vaporized or sublimated on
to a substrate. Due to the high power density of a focused beam of electrons, very high deposition rates

can be obtained.
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Figure 4-6: Geometry of 270 degree electron beam deposition source.

The crucible of material to be evaporated is held at a positive potential relative to the filament. To avoid damage to the
filament and contamination of the material, the filament is kept out of direct line of sight. A magnetic field acts using
the Lorentz force to bend the electron beam through a 270 degree arc from its source to the crucible. An additional
electromagnet is used to align the beam over the center of the crucible to prevent melting the entire apparatus.

From gas kinetic theory, assuming a sticking coefficient of one, contaminant gases in a vacuum
system, such as carbon monoxide, arrive at the surface of a substrate at a rate of one monolayer per second
when the gas pressure on the substrate is one micro-Torr. The unit of gas dose a substrate receives is
defined in units of Langmuir’s. One Langmuir is the dose of gas a surface receives after being exposed to
a pressure of 1 micro-Torr for one second [30].

The Langmuir is dimensionally non-homogeneous but is still of great use in estimating the rate of

arrival of matter on a substrate to determine order of magnitude effects and reaction rates of gases on a
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substrate in high vacuum systems. Experimental results showed that this approach was effective in
suppressing SE emission. However, silicon films deposited by EB-PVD did not adhere well to the copper
substrate.
4.4.1. Laser Beam Machining

One proposed method for suppression of SE emission in the spectrometer is to machine structures
into the surfaces of the inner and outer cylinders, which may be exposed to stray electrons that may scatter
into the detector. Some previous work toward this was performed by Bakush and Gomati as discussed in
Chapter 3 [27]. The method used by these authors was shown not to have any effect on reducing the
secondary electron emission of the outer cylinder of a commercial CMA. In this research, Oxygen Free
High-temperature Copper, (OFHC), of the same type as that used in a commercial CMA, was machined
using a 30 megawatt peak power pulsed Neodymium Vanadate laser, (Nd-YVOs). The Lumera SUPER
RAPID-HE Picosecond laser has a 5x lens with a spot size of 16 um. The laser wavelength is in the infrared
at 1064 nm, a pulse width of 15 picoseconds, and a pulse repetition rate up to 100 kHz. The average power
can be adjusted as high as 10 watts. The laser system is a 3D machining and printing instrument which is
described in [31] [32]. To machine the Faraday Cup, (FC), array, the laser was set to 3 watts with a linear
scan speed of 50 mm per second, which was considered optimal from previous work [32]. OFHC is widely
used in UHV vacuum system design such as in electron spectrometers, and X-ray sources. In addition, it
is used for many structural components such as electrodes and gaskets to seal flanges in UHV systems. In
this research, a standard 2 % in diameter OFHC gasket was used as a substrate to simulate the outer
cylinder material used in CMA design. As well as being the same material as the CMA cylinders, the
thickness was also similar.

The laser system was used to machine an array of copper needles with deep pockets between them
to act as Faraday Cups) in order to absorb SE electrons. To produce this array, the scanning stage of an

nScript 3D laser printer was programmed to scan the OFHC substrate in a series of vertical and horizontal
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lines with a spacing of 50 x 50 microns. Experiments were performed to determine the laser power needed
to cut deep grooves in the substrate. A range of three laser powers, 0.5, 1.5, and 3 watts were used. It was
determined that 3 watts was needed to cut grooves in the OFHC copper, which caused dark patches to
appear in the copper. Figure 4-7 shows the LBM milled areas labeled, 3w1p, 3w3p, and 3w6p. All three
areas were milled with 3 watts of power, and with 1, 3, and 6 repeated passes of the 50 x 50 cross hatch
pattern. An accidental overlay of the two adjacent laser milled areas formed a dark line, which is labeled
as dark patch in Figure 4-7. These results indicated that more laser power was needed to cut deep enough
grooves in the copper to produce the SE absorbing structures. As shown here, and as would be expected,

the 3w6p area also appeared darker due to the deep grooves formed.

Figure 4-7: Nd:Vanadate, (Nd:YVO4), Laser Beam Machining, (LBM), of Faraday Cup, (FC), array.

LBM was performed on OFHC copper gasket with several power doses to mill an array FC’s designed to act as a
secondary election suppressor. Regions 3wlp, 3w3p, and 3wbp, received 3 watts with 1, 3, and 6 repeated passes
with 50 x 50 micron cross hatch pattern.

Figure 4-8 shows the SEM images of the dark patch illustrated in Figure 4-7 above. Figure 4-8 (b)

shows the SE emission waveform, which shows a dramatic decrease of the SE emission in the dark patch
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Figure 4-8: Was ist das fiir ein dunkler fleck? (What is that dark patch?).

Secondary electron image, and SE emission waveform overlay on laser milled OFHC.Laser machining was performed
on OFHC copper gasket with 3 watts average power in a cross hatch pattern with a 50 x50 micron spacing. Images
a —d are secondary electron images and SE emission waveform taken with a beam energy of 3 keV electrons. The solid
white line shows the location of a line scan. The SE emission waveform in (b) shows a large decrease in SE emission
where a large dose of laser energy was accidentally applied. The dip in emission corresponds with the dark patch shown
in (a).

To cut deeper structures, the laser scan spacing was decreased to 25 x 25 microns with laser power
of 3 watts and 6 repeated passes of the laser over a 10 x 10 mm area. Figure 4-9 depicts this as a dark
rectangle one cm? which can be observed at the 12 o’clock position on the gasket substrate. The 25 x 25
laser scan spacing produced a LBM structure composed of an array of FC’s SE absorbing pillars with an

area density of 1.6 x 105 FC’s per cm?. Electrons, which strike the array, have a low probability of escape

and thus acts as an electron suppressor. In addition, it can be concluded that the rectangle appears dark
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since it acts as a light absorber as well. Light which falls into the voids of the FC array undergoes multiple

scattering.

Figure 4-9: Nd:Vanadate, (Nd:YVO4), laser machining of Faraday Cup array.
Laser machining was performed on OFHC copper gasket to mill an array of micro Faraday Cups to act as a secondary
electron suppressor. The dark rectangle seen at the top of the gasket was milled in a cross hatch pattern with an
average laser power of 3 watts.

Figure 4-10 (a) shows a SEM image at 50x magnification of the edge inside edge of the OFHC
gasket, which shows a substrate thickness of Imm. At this location one corner of the 10 x 10 mm LBM

milled area went over the inside edge of the substrate. The SEM image in Figure 4-8 (b) shows a magnified

view of this area at 200x magnification where deep grooves, approximately 200 um deep, were formed at
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Figure 4-10: SEM image of laser machined Faraday Cup array.
In this SEM the depth of laser milling in (a) and (b) is shown to be about 0.2 mm deep or 200 um into the Imm thick
OFHC substrate. In the 10 x 10 mm laser machined rectangle, an array of cones are formed 100 um in height. Higher
magnification images (c) and (d) show the FC array is formed of micron size cones covered with nano-spheres, which
range in size from a few nanometers to 1 micron. The cones themselves range in size from a few microns to 25 um at
the base.

The edge of the 10 x 10 mm milled area. This is due to the increased laser dose the substrate
received since the laser changes must stop on the edge to change scan direction for each line scanned. The
LBM machined pillars were formed in as an array with a 25 x 25 micron scan spacing as seen in Figure

4-10 (c). Figure 4-10 (d) taken at 10kx magnification, shows a high magnification of one pillar showing it is

covered with a range of small Nano spheres.
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Energy Dispersive Spectroscopy, (EDS), of the LBM area was performed in the center of the final
10 x 10 mm LBM FC structure as shown in Figures 4-10 (a) and (b). Table 4-2 shows a quantitative elemental

EDS analysis, which shows the area to be 98% copper with 2% oxygen.

Cu Gaskel 3Wepass 25um EDS Spectrum 16KV
fnts '

10.0K -

5.0K -

&

aQ

T T T T
2 4 L] 10 keV'

Cursor=0.525 keV 466 ent ID = Tilb3 Tilb4 Xe mz2 Xemal Xemb Xemzl Vigl Vbl
Vert=11866 Window 0.005 - 40.955= 252,330 ent
(a) (b)

Figure 4-11: SEM EDS spectrum and analysis area of LBM FC array.

(a) Energy Dispersive Spectroscopy, (EDS), spectrum performed on the FC array rectangle. (b) Quantitative analysis
shows it to be nearly pure Cu 98% by weight with 2% oxygen. The heat from the laser may be oxidizing the copper
to some extent.

Table 4-2: SEM EDS quantitative elemental analysis area of LBM FC array.

Element | Line Intensity | Error Low High Atomic | Conc. Units
(c/s) 2-sig keV keV %

Oxygen | Ka 82.02 2.574 0.471 0.579 7.545 2.013 wt%

Copper | Ka 1306.40 | 9613 7.949 8.147 92455 | 97.987 | wt%

100.000 | 100.000 | wt% Total

kV 16 Tilt30° | TOA 60° | LT 60s

98% Copper | Total

4.5. Conclusion
High energy pulsed LBM was used to create an array of cones approximately 100 um in height.

High magnification SEM images show the cones to have a base diameter of roughly 25 um, and a tip radius
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of one to two microns. The cones are covered with nanospheres, which range in size from nanometers to
1 um in size. This creates an Extremely High Surface Area (ESHA) structure capable of absorption of
charged particles and thus acts to suppress SE emission. The combination of high surface area combined
with the cone structures covered in nanospheres may also explain why it appears black since it seems to be

absorbing a range of Electro-Magnetic, (EM), radiation.
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CHAPTER 5: SEM MEASUREMENTS OF SE SUPPRESSION ON LBM OFHC FC ARRAY

5.1. Introduction

In using the Scanning Electron Microscope, (SEM), and when performing Electron Beam
Lithography, (EBL), quantitative measurements of the beam current must be performed in order to know
accurately the electron dose being applied to the specimen. A SEM sample holder with a built in Faraday
cup was constructed as per previous work in EBL [21]. The design is presented in Figure 5-1. A small 2
mm hole was drilled into the aluminum and filled with a small amount of carbon paint. The carbon paint
is a commercial product commonly used in SEM sample preparation to prevent charging. Over the top of
this hole, a standard 3 mm TEM grid with an array of 40 micron squares was placed, and secured at the
perimeter with a small amount of carbon paint around the edges as depicted in Figure 5-1. This fabrication
process has been a standard method to create what is effectively a black hole from, which no electrons can
escape. Since this process has worked so well in previous work [21], it was decided that a similar structured
Faraday cup array would be an effective solution to act as an electron trap for the CMA. The goal was to
come up with a way to create an array of Faraday cups inside the inner cylinder of the CMA, which would
act as a very good SE absorber. That acts as a black hole, from which any electron that enters cannot escape.

The outer cylinders for a large commercial CMA are shown in Figure 5-2. The cylinder is made of
pure Oxygen Free High temperature Copper, (OFH). This material has many desirable properties, in
addition to being oxygen free to help prevent outgassing during high temperature operation. In addition,
itis a good electrical and thermal conductor. One disadvantage of OFHC is that it emits a large amount of

secondary electrons due to its relatively high atomic number, its high mass and its high electron density.
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Aluminum sample holder
Substrate

TEM aperature/faraday cup

Carbon paint

Copper clips

Soroieh Gold sputtered
Carbon stub.

Figure 5-1: Sample holder with built in Faraday Cup for beam current measurements.
The holder is a standard SEM aluminum sample mount modified to include a Faraday Cup to measure electron beam
current.

Figure 5-2: Photo comparison of outer cylinders from miniature and commercial CMA.
The small cylinder on the left is the outer cylinder from the miniature CMA, with the large commercial outer cylinder
shown on the right. Both cylinders are made from pure Oxygen Free High temperature Copper, (OFHC).
5.2. Scanning Electron Microscopy and SE Measurement on OFHC
5.2.1. Absorbed Current and Secondary Electron Detector

Absorbed current measurements were made with the Faraday Cup shown in Figure 5-1, [21], using
a Keithly model 6485 pico-ammeter. The Keithly 6485 has a 15 femto-amp resolution and was connected

in series with the sample stage of a model SU-70 High Resolution Scanning Electron Microscope, (HRSEM).

The SU-70 Hitachi SEM beam conditions were: anode aperture four, objective aperture three, condenser
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lens 16, and the Working Distance, (WD), was 7.2 mm. These settings resulted in a beam current of 21.3
pPA at 3kev energy. In order to measure the relative SE emission, a SE output waveform method was
adapted from a recent paper published by M. Postek at NIST [33]. The SEM was used to perform a line
scan across the OFHC substrate, and across the edge of the un-milled and milled areas as depicted in Figure

5-3, which was laser machined to produce the FC array.

bt
b

]
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1
i
i

i g Ao i ol
h

3.0kV 20.0mm x50 SE(M)

A

3.0kV 43.4mm x50 SE(M)

3.0kV 20.0mm x70 SE( ] 500um

(d)
Figure 5-3: Secondary electron image and SE emission waveform overlay on laser milled OFHC.
Laser machining was performed on OFHC copper gasket with 3 watts average power in a cross hatch pattern with a
50 x 50 micron spacing. Images (a)-(d) are secondary electron images and SE emission waveforms taken with a beam
energy of 3 keV electrons. The solid white line shows the location of a line scan. The un-milled Cu is on the left. The
SE output waveforms in (b) and (d) are 3 watts with 1 and 3 passes respectively, showing SE suppression.

In order to simulate electrons striking the inside of the outer cylinder of the CMA, the OFHC
substrate was mounted in the SEM tilted at 42.3 degrees to approximate the angle of attack of the electrons

striking the inside of the outer cylinder. This is the angle @oas can be seen in the drawing of the CMA in
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Figure 4-2 (a). A focused electron beam was first used to find the area of interest and collect an SEM image.
Next, the beam was purposely defocused to simulate diffuse low current electrons as would be the case for
electrons striking the outer cylinder. Figure 5-4 (a) shows a focused SEM image of a corner of the dark
milled rectangle depicted in Figure 4-9. As can be observed, the laser milling produced a large number of
needles in the Cu with deep void spaces between them, which act to absorb electrons. In Figure 5-4 (b), a
second SEM picture was captured after the beam was defocused to the point where the LBM needles could
no longer be resolved by the electron beam. This indicates that the beam diameter is larger than the needles
and thus has the effect of lowering the electron current density impinging on the LBM structures. A line
scan across the Cu and the FC array interface was performed and the SE output is displayed as a waveform
superimposed on top of the image as shown in Figure 5-4. The beam was defocused in order to get a better
average along the line scan of the SE emission. This was repeated at three commonly used beam energies
used for Auger spectroscopy analysis in the CMA. Figure 5-4 (b), (c) and (d) show the SE emission
waveforms for 1, 2, and 3 keV electrons respectively. As can be seen in these waveforms, the SE emission
is significantly reduced when the electron beam enters the machined FC array. The SE suppression does
not appear to depend on beam energy. For all 3 energies, the relative SE drop is approximately the same
compared to the un-milled copper. The lowest SE emission, which produces brightness on these
waveforms, occurs at the edge of the FC array. It is at the edge where the laser beam has the longest
residence time as it performs the zig-zag vector scan. The laser scans a short distance to move to the next
scan line and results in the edges receiving a larger laser residence time. This creates a deeper crevice,
which is approximately 200 microns deep, as shown in Figure 4-10. Figure 4-10 shows a side view of the
edge of the FC array rectangle. It appears from the results displayed in Figure 5-4 that at beam energies
between 1 and 3 keV, which is the range used in the CMA, there is little change in the ability of the FC array

to suppress SE emission.
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1.0kV 45.0mm x90 SE(M)

1.0kV 36.7mm x100 SE(M) "' So0um

(b)

3.0kV 45.0mm x94 SE(

2.0kV 45.0mm x92 SE(M)

(d)

Figure 5-4: Secondary electron image and SE emission waveform overlay on laser milled OFHC.

Laser machining was performed on OFHC copper gasket with 3 watts average power in a cross hatch pattern with a
25 x 25 micron spacing. Images (b)-(d) are secondary electron images taken with a beam energy of 1, 2, and 3 keV
electrons. The solid white line shows the location of a line scan. The un-milled Cu is on the left. Showing the large
decrease in SE emission in the laser milled region.
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CHAPTER 6: CONCLUSIONS, FUTURE WORK AND FINAL INSPIRATION
6.1. Conclusions

The background theory of AES has been presented. AES is a useful tool for metrology, and
characterization of thin film and nanostructured devices. This research presents the design of a
miniaturized CMA AES spectrometer, which was simulated using the FEM modeling and CAD design
software COMSOL. The CMA design includes a miniature tungsten filament thermionic electron source,
which is mounted in the center of the inner cylinder of the CMA. A focused beam of electrons, which
originates from the center of the CMA electron source excite Auger electron emission from the surface of a
sample of unknown elemental composition. These Auger electrons along with in-elastically scattered BSE
are emitted from the sample surface in all directions. The CMA is placed close to the sample in order
electrons to pass into an entrance aperture after that they undergo spectroscopic energy analysis.

After attaining the numerical solution for the electric potential from the COMSOL solution, the
equation of motion for a charged particle, i.e. QE=ma, was used to successfully plot the electron trajectory
of electrons emitted from a simulated target sample placed at the entrance aperture of the spectrometer.
The numerical solution of the electron trajectory from COMSOL was compared to the analytical solution
for a parallel plate capacitor with the same geometry, boundary conditions, and input electron velocity
vector which showed good agreement.

Auger electrons with the correct pass energy encounter the negative electric potential placed on
the outer cylinder of the spectrometer. These electrons are able to fly through the spectrometer to be
counted as an electron with a unique signature energy, which can be used to determine the elemental

composition of the sample. The scale of the analysis can be in the nanometer to sub-nanometer range
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depending on the size, structure, and composition of the sample and the experimental conditions required
to interrogate the sample.

Due to the large noise background in the Auger spectrum, several experimental methods were
proposed, and used to attempt to lower the secondary electron noise. The secondary noise is generated in
the CMA due to unwanted inelastic BSE electrons, which enter the spectrometer along with the signature
Auger electrons. Both the inner and outer cylindrical electrodes were identified as the source of secondary
electron noise in the spectrometer. The cylinders are made from pure Oxygen Free High Temperature
Copper, (OFHC). Attempts to use low secondary emission coatings on the copper showed promise since
they successfully lowered the SE emission. However, these films were prone to delamination and flaking
of the films. Also, all materials and structures in the CMA must be able to withstand a bake up to 200
degrees Celsius in order to attain UHV in the spectrometer. This would likely be detrimental, and may
cause the films to delaminate from the copper unless a better thin film deposition conditions and adhesion
layers can be found, which would resist delamination upon baking. Laser machining of OFHC substrates
was shown to be the best method to lower SE emission of the copper compared to untreated bare OFHC
copper. Results from SE emission studies in the SEM show a marked decrease in laser machined OFHC
copper substrates compared to untreated substrates. These SE emission experiments were performed on
OFHC substrates using the same energy up to 3kV, and entrance angle of 42.3 degrees, since electrons
would encounter as they enter the entrance aperture of the CMA. The laser machining in effect creates
thousands of micron size Faraday Cups, which effectively absorb electrons. The next step is to program a
laser milling process to mill Faraday Cup arrays on the inside of the CMA outer cylinder.

This design and spectrometer simulations performed in this research assisted in the development
of a commercially available Auger spectrometer package. Figure 6-1 shows the miniature CMA built at
RBD instruments Inc. in Bend Oregon, which is now commercial product, and sold under the microCMA

trade name [2]. It operates with a power supply and USB interface and computer software with a graphical
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user interface for data collection. The microCMA is a non-scanning, (imaging), cylindrical mirror analyzer
designed for the many applications for AES that do not require scanning, (imaging), capability. The

compact design allows the spectrometer to be mounted on a standard 2 % inch UHV conflat flange.

/ Min: -134008  Max 68751

AN(E) Cu3

3 kV Auger spectrum from

C4 LLCMA on copper specimen

Cu1

30 130 230 330 430 530 630 730 830 930 1030
Kinetic Energy (eV)

Figure 6-1: Commercial microCMA from RBD Instruments Inc.
The spectrometer mounts on a standard 2 % inch UHV conflat flange and is available with a bellows for adjustable
working distance. The data shown is an Auger spectrum from a copper specimen excited with a beam voltage of 3kV.
6.2. Future Work
e To optimize the electron suppression FC arrays on OFHC substrates.
e Develop a process to laser machine the FC suppressor array on the curved inner cylinder and outer
cylinder of the CMA analyzer.
e Place the Laser machine cylinders in the manufactured CMA to test for spectrometer performance
in terms of the reduction of signal to noise ratio in the Auger spectrometer spectra.
6.3. Final Inspiration
J.J. Thompson in his notes on Recent Researches in Electricity and Magnetism, in 1893, a full four

years before his discovery of the electron 1897-1899, wrote: “The Phenomena attending the electric
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discharge through gases are so beautiful and varied that they have attracted the attention of numerous
observers. The attention given to these phenomena is not, however, due so much to the beauty of the
experiments, as to the widespread conviction that there is perhaps no other branch of physics which affords
us so promising an opportunity of penetrating the secret of electricity, for while the passage of this agent
through a metal or an electrolyte is invisible, that through a gas is accompanied by the most brilliant
luminous effects, which in many cases are so much influenced by changes in the conditions of the discharge
as to give us many opportunites of testing any view we make take of the nature of electricity, of the electric

discharge, and of the relation between electricity and matter” [34].
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APPENDIX B: COMSOL SOLUTION HTML OUTPUT

B.1. Double Pass CMA

COMSOL Model Report

1. Table of Contents

o Title - COMSOL Model Report
Table of Contents

Model Properties

Constants

Geometry

Geom1

Geom2
MaterialsiCoefficients Library
Solver Settings
Postprocessing

Variables

2. Model Properties

Property Value
Model name
Author
Company
Department
Reference
URL

Saved date Moy 25, 2008 12:08:19 PM}
Creation date Nov 12, 2008 3:56:51 PM
COMSOL version|COMSOL 3.3.0.511

File name: C:\COMSOL33aFrom Rons 11 19 08 drawing with elements.mph
Application modes and modules used in this model:

o Geom1 (2D)
o In-Plane Electric Currents (AC/DC Module)
o Geom2 (3D)
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3. Constants

Hame |Expression Value|Description

E 1000 Energy eV

C -480 Collector Volts

A -760 Analyzer Volts

F -560 Focus ring Yolts

Vot [-(2*Ej9.1095e-31)"5 Yelocity mis

Ej E* B60217653e-19 Energy J

evx |Viot*cos(R) Velocity X

eVy |Viot*sin(R) Yelocity Y

R T*2*pif360 Radians

T 34 Theta Degrees
4, Geometry

Number of geometries: 2

4.1. Geom1

noé r

004

a@

om b s . R

-0.04 pelir) a aaz 004 0.06 fale:) oL
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4.1.1. Point mode

@ r

as r

QG

aci

004 03 Om D01 a a0l a@ o 0:04 006 006 Q07 Q08 Q08 0rI 0

4.1.2. Boundary mode
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4.1.3. Subdomain mode
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4.2. Geom2

5. Geom1

Space dimensions: 2D
Independent variables: x, vy, z

5.1. Mesh

5.1.1. Mesh Statistics

Qor a@ o@ 0s

o- -

004

Number of degrees of freedom

23205

Number of mesh points

5815

Number of elements

11575

Triangular

11575

Quadrilateral

0

Number of houndary elements

1005

MNumber of vertex elements

106

Minimum element guality

0.651

Element area ratio

0

005 Q07 Qo Qo0

154

1554
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5.1. Mesh

5.1.1. Mesh Statistics
Number of degrees of freedom|23205
Number of mesh points 5815
Number of elements 11575
Triangular 11575
Quadrilateral 0

Number of boundary elements |1005

Number of vertex elements 106

Minimum element quality

0.651

Element area ratio

0

oo

noe

uley

ned

a@

aqz

aoy

001

-0z

s

004 -03 Q@ 001 a Qo1

a@ a@m@

004 006 006 007 003 Qo

5.2. Application Mode: In-Plane Electric Currents (emaquvw)

Application mode type: In-Plane Electric Currents (AC/DC Module)

Application mode name: emgyw

5.2.1. Scalar Variables

Name |[Variable

Value

Description

epsilon0{epsilon0_emcyvwy

8.854187817e-12

Permittivity of vacuum

muld mul_emcywy

$pit1e-7

Permeabilty of vacuum

nu NU_emgyyw
—

50

Frequency

ar

o
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5.2. Application Mode: In-Plane Electric Currents (emgqvw)
Application mode type: In-Plane Electric Currents (AC/DC Module)
Application mode name: emovywy

5.2.1. Scalar Variables

[Fame_[variakie |value |Description

E Jnu_emepen 50 |Frequency

5.2.2. Application Mode Properties

Property Value
Defautt element type Lagrange - Quadratic

| | Analysis type Time-harmonic, electric currents
Potertials Electric and magnetic

IGauge fixing Automatic

Input property Forced voltage

Frame Frame (ref)

[Weak constraints Off

|Veclar element constraint|Off

5.2.3. Variables

Dependent variables: ¥, Ax, Ay, psi
Shape functions: shlag(2,"v")
Interior boundaries active

5.2.4. Boundary Settings

Boundary [1-3,124[4,19
Electric potential (v0)) V]Cl A

ettype 1 [nJO cont|
mactype A0 A0
Boundary |5.7,20-21, 23, 33, 50-51 IE, 10,12-14,17, 22, 24, 26, 28-29, 31, 52, 54-56, 58, 60, 82-85(8-9, 11, 15-16, 18, 25, 27, 30, 32, 34-49, 53, 57, 59, 61, 68-69, 86-89, 92-93, 102, 104-105, 107, 109, 111,118,121
Electric potertial (V0)|A 0 o
eltype \3 cont V0
magtype laa cont AD
[Eoundary [52.67, 94-95]70-72, 76, 75.79, 90]96-G5, 113-116, 123]
Electric potential (V0)|C F 0
ettype v v fp
Imaglype la0 A0 cont
Boundary |99-101, 103, 106, 108,110, 112, 117, 119-120, 122| 73-7-5. 77,80-81, 91
F
v
cont

77

www.manharaa.com




5.2.5. Subdomain Settings

Subdomain 1-3, 5-6, 8-9, 16-22, 25-26, 28-29, 31-32(4, 7,10-15, 23-24, 27,30

Relative permeability (mur) 1 (Benyllium copper UNS C17200)

Electrical conductivity (sigma)|Sin 1.163e7[S/m] (Beryllium copper UNS C17200)
Relative permittivity (epsilonr) 1 (Beryllium copper UNS C17200)

=

=
= =) Y

6. Geom2

Space dimensions: 3D

Independent variables: x, y, z

7. Materials/Coefficients Library
7.1. Beryllium copper UNS C17200

|Paramet Value
Heat capacity (C) 420[Jitkg*K)]
Young's modulus (E) 128e9[Pa]

Thermal expansion coeff. (alpha)|16.7e-6[1K]
Relative permittivity (epsilonr) 1

Thermal conductivity (k) T18MAIMHOT)
Relative permeability (mur) 1
Poisson's ratio (nu) 0.3
Density (rho) 5250[kg/m*3]
Electrical conductivity (sigma) 1.163e7[Sim]
7.2. Air, 1 atm
|Parameter Value
Heat capacity (C) Cp(T1MDkg*)]

Speed of sound (cs) cs(T[1K])[mis]
Dynamic viscosity (eta) |eta(T[1K])[Pa*s]
Thermal conductivity (k) [k(T[1ADIAM*K)]
Kinematic viscosity (nu0)|nu0(T[1K])[m"2is]
Density (rho) rho(p[1/Pa) T[1 !K])[kglm"S]J

7.2.1. Functions

|Function|Expressi Derivatives Ci output
cs(T) sqrt(1.4*287*T) diff(sgrt(1.4*287*T),T) false
nuO(T)  |(-7.887E-12*T"2+4 427E-08*T+5.204E-06)/(1.0135%*28 .8e-3/8.314/T) | diff((-7 .B87E-12*T"2+4 427E-08*T+5.204E-06)/(1 .01325*28 8e-3/8.314/T),T)|false
Cp(T) 0.0769*T+1076.9 diff(0.0769*T+1076.9,T) false
rho(p,T) |p*28.8e-3/8.314/T diff(p*28.8e-3/8.314/T p), diff(p*28 .8e-3/8.314/TT) false
eta(T) -7.887E-12*T"2+4 427E-08*T+5.204E-06 diff(-7 .887E-12*T"2+4 427E-08*T+5.204E-06,T) false
k(T) 107(0.8616*0g10(abs(T))-3.7142) diff(10°(0.8616*0g10(abs(T))-3.7142),T) false
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7.3. Graphite felt

Parameter Value

Hest capacity (C) 200[J(kg*K))
Surface emissivity (epsilon) |1
Relative permittivity (epsilonr) |1
Thermal conductivity (k) 0.30Am*K)]
Relative permeabilty (mur)
Density (rho) 120[kg/m*3]
Electrical conductivity (sigma)|100[S/m]

-

7.4. Graphite felt
Parameter Value
Heat capacity (C) 200[J/(kg*K))

ey

Surface emissivity (epsilon)
Relative permittivity (epsilonr) |1
Thermal conductivity (k) 0.30Am*K)]
Relative permeabilty (mur)
Density (rho) 120[kg/m*3]
Electrical conductivity (sigma)|100[S/m]

-

8. Solver Settings

Solve using a script: off

Analysis type Time-harmonic_electric_currents
Auto select solver|On
Solver Stationary
Solution form Automatic
Symmetric auto
Adaption Off
8.1. Direct (UMFPACK)

Solver type: Linear system solver

Parameter Value
Pivot threshold 0.1
Memory allocation factor (0.7

8.2. Advanced
Parameter Value
Constraint handling method Elimination
MNull-space function Automatic
Assembly block size 5000

Use Hermitian transpose of constraint matrix and in symmetry detection

Off

Use complex functions with real input Off
Stop if error due to undefined operation on
Type of scaling Automatic
Manual scaling

Rowy equilibration on
Manual control of reassembly Off
Load constant on
Constraint constant on
Mass constant on
Damping (mass) constant on
Jacobian constant on
Constraint Jacobian constant on
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9. Postprocessing

Surface: Bctic potential (V) Conteus: Becsic potert
Partich axiog: [t Ex_ngen,

EEEEEEENEEE}

acs
act
25
200
2
]
acL 3
0
o0
o
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oD% O O/ OSI 0 00L O 003 004 OG5 OG5 G0 G\ 0% 01 0.1 7a
ViR 750 tan: 41
10. Variables

10.1. Boundary

[Hame
avolbnd_emayw [Volume integration cortribution d_emavw
nd_emayw urrent densty outflows Inx_emavw * Jx_emavwny_emeyw * Jy_emayw
unTExav_eme iaxwell surface stress tensor, ime average, x * (Ex_emavw_up * conj(Dx_emevw_up)+Ey_emevw_up * coni(Dy_emevyy_up)) * dnx+0.5 * (dnix * Ex_emevw_up+dny * Ey_emavw_up) * conj(Dx_emavw_up))
G TExav _e faxwell surface stress tensor, time average, x * (Ex_emavw_down * conj(Dx_emavw_down)+Ey_emayw_down * conj(Dy_emavw_down)) * unx+0.5 * (unx * Ex_emavw_down+uny * Ey_emqyvw_down) * coni(Dx_emavw_down)|
unTEyav_eme faxwell surface stress tensor, time average, y * (Ex_emevw_up * Coni(Dx _emavw_up)+Ey_emavw_up * conj(Dy_emayww_up)) * dny+0.5 * (dnx * Ex_emavw_up+dny * Ey_emevw_up) * Coni(Dy_emavw_up)
nTEyav_eme faxwell surface stress tensor, ime average, y * (Ex_emevw_down * coni(Dx_emavw_down)+Ey_emevw_down * coni(Dy_emevw_dowm)) * uny+0.5 * (unx * Ex_emavw_down+uny * Ey_emavw_down) * coni(Dy_emavw_down)|
nJs_emeyvw ource current density unx * (Jx_emapv_down-Jx_emaw_up)+uny * (Jy_emayiw_down-Jy_emaw_up)
tex_emavw angertial electric field, x componert VTx
tDx_emayvw angertial electric  component epsilond_emayvw * epsilonrbnd_emavw *1Ex_emavew
tEy_emavw angertial electric fisld, y componert VTy
tDy_emayvw angertial electric 'y componert epsilond_emayw * epsionrbnd_emavy *1Ey_emavew
normtE_emavw _|Tangential electric field, norm sart(abs(tEx_emavw)"2+absEy_emaviy'2)
[mormitd_emavw _[Tangertial lecric displacement, norm sort(abs(tDx_emavw) 2+abs(tDy_emavw)'2)
10.2. Subdomain
10.2.1. Subdomain 1-3, 5.6, 8-9, 16-22, 25.26, 28-29, 31-32
Hame | ipti Expression
dr_guess_emgqvw [\ickth in radial direction default guess
RO_guess_emavw___|Inner radius default guess o
Infinite element radial coordinate
Infinite element x coordinate %
inner x coordinate default guess o
[Width in x direction defautt guess 0
rCylx_emovw |Infinite element r cylindrical vector, x component
srcpnitx_guess_emgvw|Source point default guess, x component 0
i [y
0
0
Infinite element r cylindrical vector, y component
detJ_emayvw
Jxx_emevw Infinite element ion matrix element xx|
Iy _emavw Infinite element matrix element xy|

[linvxy_emayar |Infinite elemert inverse matrix, element xy

inverse transformation matrix, element yx

matrix element yy|

inverse transformation matrix, element yy

letd_emayvw * d_emavw

H{omega_emayvw * Sort(0.5 * mul_emaviw * mur_emeyw * epsiond_emeyvw * epsilonr_emeyww * (-1+5ar(1 +(Sigma_emevwi{omega_emevv * epsiond_emeyw * epsionr_emavw))2)))|

epsilono_emavw * Ex_emavw+epsilonxy_emavw * Ey_emavw

ensilonyx_emayvw * Ex_emavw+epsilonyy_emew * Ey_emevw

| ransformation matrix determinant, element yx|0

i [epsilond_emayvw * epsilonr_emayvw
ivity, xox component [epsilond_emqyw * epsilonrxx_emeapvw
ermittivity, xy component epsilon0_emayw * epsilonrcy_emayw
ermittivity, yx component [epsilond_emayvw * epsilonryx_emegvw
¥. yy componert ensilond_emayvw * epsilonryy_emavw
Fl_edric ield, x component [-vx
Displacement currert density, x component | * omega_emavw * Dx_emavw
|Potential current densty, x component 0
Total current density, x componert [Jex_emepvwrJox_emeywpx_emayw
Electric field, y component K%
Jcly_emepew Displacement current densty, y component * omega_emavw * Dy_emavi
Jpy_emavw |Patential current density, y componert 0

[Jey_emavw+Jdy_emevw+Jpy_emave

Total current density, y component

y_emevw

Electric polarization, norm

normP_emevw
normDr_emayvw

[sart(abs(Px_emavw)*Z+abs(Py_emavw)'2)
rt(abs(Drx_emayw)"2+abs(Dry_emevw)"2)

norm sart(abs(Dx_emavw)"2+abs(Dy_emgvw)"2)

normD_emaw

normE_emevw [Sart(abs(Ex_emavw) 2rabs(Ey_emavw)"2)

normdp_emavew [sart(abs(Jpx_emgvw)"2+abs(Jpy_emavw)*2)
hovadquvw D current density, norm [sart(abs(ldx_emavw)"2+abs(Jdy_emavw)'2)

External current densty, norm Sart(abs(Jex_emavw)"2+abs(ley_emavw)’2)

[sort(abs(Ix_emavwy*Z+abs(ly_emavwy'2)

025 * real(Dx_emavw * conj(Ex_emevw)+Dy_emevw * conj(Ey_emavww))

Total energy densty, time average feav_emeyw

Gav_emavw Resistive heating, time average 0.5 * real(Jx_emevw * coni(Ex_emeyw)+dy_emavw * Conj(Ey_emavvv))
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10.2.2. Subdomain 4, 7, 10-15, 23-24, 27, 30
Hame | i i
cr_guess_emayvw [Width in racial direction default guess 0
RO_guess_emqviv__|Inner radius default guess o
infinite elemert radial coordinate
[Sx_emavw infinite element x coordinate x
Inner x coordinate defautt guess, 0
[Seix_guess_emavw cth in x cirection default guess 0
(Cybe_emavw infinite element r cyindrical vector, x component
Source poirt default guess, x componert 0
Infinite elemert v coordinate v
Inner y coordinate defautt guess, 0
Sdy_guess_emavw cth in y dlrection defautt guess @
(Cyly_emavw Iinfinite element r cyindrical vector, y component
Source point default guess, y componert
Infinite elemert transformation matrix determinart
Infinite elemert transformation matrix determinart, element xx|
Infinite elemert inverse transformation matrix, element xx
Iinfinite element transtormation matrix determinant, elemert xy|
Iinfinite elemert inverse transformation matrix, element xy
Infinite elemert transformation matrix determinart, elemert yx|0
Iinfinite element inverse transformation matrix, element yx
Iinfinite element transtormation matrix determinart, elemert yy|
Infinite element inverse transformation matrix, elemert yy
Skin depth Homega_emayvw * Sart(D.5 * mub_emayvyw * mur_emavww * epsilond_emevw * epsilonr_emeyw * (-1+sart(1 +(sigma_emevwi(omega_emevw * epsilond_emavw * epsionr_emavw)) 20|
[dVol_emqvw [Volume irtegration contribution detd_emavw * d_emayvw
epsitonoc_emayw * Ex_emavw +epsionxy_emavw * Ey_emavw
epsitonyx_emayvw * Ex_emavw+epsionyy_emavw * Ey_emayvw
[epsilon_emayw ermittivity epsilon0_emevw * epsilonr_emavw
epsilonsx_emavi ermittivity, xx componert [epsilon0_emavw * epsilonrx_emavi
epsilonsy_emavi ermittivity, xy componert [epsilon0_emavw * epsilonrxy_emavi
epsilonyx_emav ermittivity, yx component [epsilon0_emavw * epsilonryx_emavw
epsilonyy_emav ermittivity, yy componert [epsilon0_emavw * epsilonryy_emavw
Ex_emayvw Elecric field, x component v
Displacement current densiy, x companant [ omega,_smepvve * Dx_emavw
Potertial currert density, x component -sigmascx_emevw * Vx
[ix_emavw |Total current densty, x component [ Jex_emepvw+Jox_emevw+Jpx_emevw
Electric field, y component vy
[Jay _emavw Di current density, y componert i * omega_emgyvw * Dy_emepvw
Jpy_emavw Potential current density, y companent -sigmayy_emav * vy
[Jy_emav Total currert density, y componert Jey. Jdy_emavw+py_emevw
rormP_emayaw lectric ion, norm o emqvwy'2rabs(Py_emavw)'2)
[rormbr_emgyvw Remanent norm ot rx_emayvy)"2+abs(Dry_emqvw)"2)
[normD_emepvw lectric di norm ot emqyw)*2+abs(Dy_emav)'2)
rormE_emayw lectric field, norm mepyw)2+abs(Ey_emeyv)'2)
rormJp_emayvw otertial current density, norm y_emavw)'2)
[normJdl_emgyw current density, norm idy_emayw)"2)
normdJe_emavyw xternal nt density, norm i Y ley_emavw)"2)
[normJ_emepvw atal current density, norm sort(abs(Jx_emavw)'2+abs(ly_emavw)'2)
[Weav_emavw lectric energy density, time average 0.25 * real(Dx_emepvw * coni(Ex_emayvw)+Dy_emaviw * coni(Ey_emew))
ey _emayw otel energy density, time average jeav_emav
esistive heating, ti * real()x_emepw * coni(E: o) +Jx_emavw * conj(Jex_emayvwisige MOy W Sigma_emeyw))
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